Losses and lifetimes of metals in the economy

Graedel, T. E., Harper, E. M., Nassar, N. T. & Reck, B. K. On the materials basis of modern society. Proc. Natl Acad. Sci. USA 112, 6295–6300 (2013).
Global Resources Outlook 2019: Natural Resources for the Future We Want (UNEP, 2019).
Wackernagel, M. et al. The importance of resource security for poverty eradication. Nat. Sustain. https://doi.org/10.1038/s41893-021-00708-4 (2021).
Ali, S. H. et al. Mineral supply for sustainable development requires resource governance. Nature 543, 367–372 (2017).
Schrijvers, D. et al. A review of methods and data to determine raw material criticality. Resour. Conserv. Recycl. 155, 104617 (2020).
Helbig, C., Schrijvers, D. & Hool, A. Selecting and prioritizing material resources by criticality assessments. One Earth 4, 339–345 (2021).
Charpentier Poncelet, A. et al. Life cycle impact assessment methods for estimating the impacts of dissipative flows of metals. J. Ind. Ecol. https://doi.org/10.1111/jiec.13136 (2021).
Moraga, G., Huysveld, S., De Meester, S. & Dewulf, J. Development of circularity indicators based on the in-use occupation of materials. J. Clean. Prod. 279, 123889 (2021).
Reuter, M. A., van Schaik, A., Gutzmer, J., Bartie, N. & Abadías-Llamas, A. Challenges of the circular economy: a material, metallurgical, and product design perspective. Annu. Rev. Mater. Res. 49, 253–274 (2019).
Ciacci, L., Harper, E. M., Nassar, N. T., Reck, B. K. & Graedel, T. E. Metal dissipation and inefficient recycling intensify climate forcing. Environ. Sci. Technol. 50, 11394–11402 (2016).
Watari, T. et al. Global metal use targets in line with climate goals. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.0c02471 (2020).
Nuss, P. & Eckelman, M. J. Life cycle assessment of metals: a scientific synthesis. PLoS ONE 9, e101298 (2014).
Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 16, 073005 (2021).
Beylot, A., Ardente, F., Sala, S. & Zampori, L. Accounting for the dissipation of abiotic resources in LCA: status, key challenges and potential way forward. Resour. Conserv. Recycl. 157, 104748 (2020).
Graedel, T. E. Material flow analysis from origin to evolution. Environ. Sci. Technol. 53, 12188–12196 (2019).
Chen, W. Q. & Graedel, T. E. Anthropogenic cycles of the elements: a critical review. Environ. Sci. Technol. 46, 8574–8586 (2012).
Nakamura, S. et al. MaTrace: tracing the fate of materials over time and across products in open-loop recycling. Environ. Sci. Technol. 48, 7207–7214 (2014).
Recycling Rates of Metals: A Status Report (UNEP, 2011).
Helbig, C., Thorenz, A. & Tuma, A. Quantitative assessment of dissipative losses of 18 metals. Resour. Conserv. Recycl. 153, 104537 (2020).
Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P. & Reck, B. K. Criticality of metals and metalloids. Proc. Natl Acad. Sci. USA 112, 4257–4262 (2015).
Mudd, G. M., Jowitt, S. M. & Werner, T. T. The world’s by-product and critical metal resources part I: uncertainties, current reporting practices, implications and grounds for optimism. Ore Geol. Rev. 86, 924–938 (2017).
Løvik, A. N., Restrepo, E. & Müller, D. B. Byproduct metal availability constrained by dynamics of carrier metal cycle: the gallium–aluminum example. Environ. Sci. Technol. 50, 8453–8461 (2016).
Study on the EU’s List of Critical Raw Materials (2020): Critical Raw Materials Factsheets (European Commission, 2020); https://doi.org/10.2873/92480
Global Mercury Supply, Trade and Demand (UNEP, 2017).
Burgess, H., Gowans, R. M., Hennessey, T. B., Lattanzi, C. R. & Puritch, E. Technical Report on the Feasibility Study for the NICO Gold–Cobalt–Bismuth–Copper Project Northwest Territories, Canada (Micon International Limited, 2014).
Wietlisbach, S. Latest developments and outlook for magnesium minerals and chemicals: Minerals production, market consumption drivers, new projects and forecast. In Proc. 7th June 2018 Industrial Minerals Congress, Barcelona (Fastmarkets IM, 2018); http://www.indmin.com/events/download.ashx/document/speaker/E001493/a0ID000000dIDNbMAO/Presentation
Report on Critical Raw Materials for the EU (European Commission, 2014).
Peiró, L. T., Méndez, G. V. & Ayres, R. U. Material flow analysis of scarce metals: sources, functions, end-uses and aspects for future supply. Environ. Sci. Technol. 47, 2939–2947 (2013).
Bertram, M. et al. A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products. Resour. Conserv. Recycl. 125, 48–69 (2017).
Manganese—It Turns Iron into Steel (and Does So Much More) (USGS, 2014).
Ciacci, L., Reck, B. K., Nassar, N. T. & Graedel, T. E. Lost by design. Environ. Sci. Technol. 49, 9443–9451 (2015).
Zimmermann, T. & Gößling-Reisemann, S. Critical materials and dissipative losses: a screening study. Sci. Total Environ. 461–462, 774–780 (2013).
Rasmussen, K. D., Wenzel, H., Bangs, C., Petavratzi, E. & Liu, G. Platinum demand and potential bottlenecks in the global green transition: a dynamic material flow analysis. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.9b01912 (2019).
Reck, B. K. & Graedel, T. E. Challenges in metal recycling. Science 337, 690–695 (2012).
Meylan, G. & Reck, B. K. The anthropogenic cycle of zinc: status quo and perspectives. Resour. Conserv. Recycl. 123, 1–10 (2017).
Graedel, T. E., Reck, B. K. & Miatto, A. Alloy information helps prioritize material criticality lists. Nat. Commun. 13, 150 (2022).
Cullen, J. M. Circular economy: theoretical benchmark or perpetual motion machine? J. Ind. Ecol. 21, 483–486 (2017).
Assessing Global Resource Use: A Systems Approach to Resource Efficiency and Pollution Reduction (UNEP, 2017).
Graedel, T. E. Grand challenges in metal life cycles. Nat. Resour. Res. 27, 181–190 (2018).
Roadmap to a Resource Efficient Europe (European Commission, 2011).
Marscheider-Weidemann, F. et al. Rohstoffe für Zukunftstechnologien 2021 (German Mineral Resources Agency, 2021).
Study on the EU’s List of Critical Raw Materials (2020): Final Report (European Commission, 2020); https://doi.org/10.2873/11619
Fortier, S. M. et al. Draft Critical Mineral List—Summary of Methodology and Background Information—US Geological Survey Technical Input Document in Response to Secretarial Order No. 3359 Open-File Report 2018–1021 (USGS, 2018); https://doi.org/10.3133/ofr20181021
Blengini, G. A. et al. Recovery of Critical and Other Raw Materials from Mining Waste and Landfills: State of Play on Existing Practices (Publications Office of the European Union, 2019); https://doi.org/10.2760/600775
Mudd, G. M. Key trends in the resource sustainability of platinum group elements. Ore Geol. Rev. 46, 106–117 (2012).
Nassar, N. T. in Element Recovery and Sustainability (ed. Hunt, A.) 185–206 (The Royal Society of Chemistry, 2013).
Schäfer, P. & Schmidt, M. Discrete-point analysis of the energy demand of primary versus secondary metal production. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.9b05101 (2019).
Pauliuk, S., Kondo, Y., Nakamura, S. & Nakajima, K. Regional distribution and losses of end-of-life steel throughout multiple product life cycles—insights from the global multiregional MaTrace model. Resour. Conserv. Recycl. 116, 84–93 (2017).
Godoy León, M. F., Blengini, G. A. & Dewulf, J. Cobalt in end-of-life products in the EU, where does it end up? The MaTrace approach. Resour. Conserv. Recycl. 158, 104842 (2020).
Nakamura, S., Kondo, Y., Nakajima, K., Ohno, H. & Pauliuk, S. Quantifying recycling and losses of Cr and Ni in steel throughout multiple life cycles using MaTrace–alloy. Environ. Sci. Technol. 51, 9469–9476 (2017).
Helbig, C., Kondo, Y. & Nakamura, S. Simultaneously tracing the fate of seven metals at a global level with MaTrace‐multi. J. Ind. Ecol. https://doi.org/10.1111/jiec.13219 (2022).
Lifset, R. J., Eckelman, M. J., Harper, E. M., Hausfather, Z. & Urbina, G. Metal lost and found: dissipative uses and releases of copper in the United States 1975–2000. Sci. Total Environ. 417–418, 138–147 (2012).
Dewulf, J. et al. Towards sustainable resource management: identification and quantification of human actions that compromise the accessibility of metal resources. Resour. Conserv. Recycl. 167, 105403 (2021).
Graedel, T. E. et al. What do we know about metal recycling rates? J. Ind. Ecol. 15, 355–366 (2011).
Du, X. & Graedel, T. E. Uncovering the global life cycles of the rare earth elements. Sci. Rep. 1, 145 (2011).
Haarman, A. The Anthropogenic Antimony Cycle: Dynamic Analysis of Global Flows and Stocks of Antimony and Associated Environmental Impacts (Delft University of Technology and Leiden University, 2015).
Flow Studies for Recycling Metal Commodities in the United States (USGS, 2004).
Le titane (Ti) – éléments de criticité (BRGM, 2017).
Mineral Commodity Summaries 2020 (USGS, 2020).
Gold Supply and Demand Statistics (World Gold Council, 2021); https://www.gold.org/goldhub/data/gold-supply-and-demand-statistics
Annual Report 2019 (SQM, 2019).
PGM Market Report: May 2020 (Johnson Matthey, 2020).
Nuss, P., Harper, E. M., Nassar, N. T., Reck, B. K. & Graedel, T. E. Criticality of iron and its principal alloying elements. Environ. Sci. Technol. 48, 4171–4177 (2014).
Weidema, B. P. & Wesnæs, M. S. Data quality management for life cycle inventories—an example of using data quality indicators. J. Clean. Prod. 4, 167–174 (1996).
Graedel, T. E. et al. Methodology of metal criticality determination. Environ. Sci. Technol. 46, 1063–1070 (2012).
Reichl, C. & Schatz, M. World Mining Data 2021 (Federal Ministry of Agriculture, Regions and Tourism, 2021).
Pauliuk, S. & Heeren, N. ODYM—an open software framework for studying dynamic material systems: principles, implementation, and data structures. J. Ind. Ecol. https://doi.org/10.1111/jiec.12952 (2019).
Helbig, C. & Charpentier Poncelet, A. ODYM–MaTrace–dissipation. OSF Registries https://doi.org/10.17605/OSF.IO/CWU3D (2022).